Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams
نویسندگان
چکیده
Forming an effective multi-robot team to perform a task is a key problem in many domains. The performance of a multi-robot team depends on the robots the team is composed of, where each robot has different capabilities. Team performance has previously been modeled as the sum of single-robot capabilities, and these capabilities are assumed to be known. Is team performance just the sum of single-robot capabilities? This thesis is motivated by instances where agents perform differently depending on their teammates, i.e., there is synergy in the team. For example, in human sports teams, a well-trained team performs better than an allstars team composed of top players from around the world. This thesis introduces a novel model of team synergy — the Synergy Graph model — where the performance of a team depends on each robot’s individual capabilities and a task-based relationship among them. Robots are capable of learning to collaborate and improving team performance over time, and this thesis explores how such robots are represented in the Synergy Graph Model. This thesis contributes a novel algorithm that allocates training instances for the robots to improve, so as to form an effective multi-robot team. The goal of team formation is the optimal selection of a subset of robots to perform the task, and this thesis contributes team formation algorithms that use a Synergy Graph to form an effective multi-robot team with high performance. In particular, the performance of a team is modeled with a Normal distribution to represent the nondeterminism of the robots’ actions in a dynamic world, and this thesis introduces the concept of a δ-optimal team that trades off risk versus reward. Further, robots may fail from time to time, and this thesis considers the formation of a robust multi-robot team that attains high performance even if failures occur. This thesis considers ad hoc teams, where the robots of the team have not collaborated together, and so their capabilities and synergy are initially unknown. This thesis contributes a novel learning algorithm that uses observations of team performance to learn a Synergy Graph that models the capabilities and synergy of the team. Further, new robots may become available, and this thesis introduces an algorithm that iteratively updates a Synergy Graph with new robots.
منابع مشابه
Creating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملCreating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملTeam behavior in interactive dynamic influence diagrams with applications to ad hoc teams
Planning for ad hoc teamwork is challenging because it involves agents collaborating without any prior coordination or communication. The focus is on principled methods for a single agent to cooperate with others. This motivates investigating the ad hoc teamwork problem in the context of individual decision making frameworks. However, individual decision making in multiagent settings faces the ...
متن کاملAdapting Plans through Communication with Unknown Teammates: (Doctoral Consortium)
Coordinating a team of autonomous agents is a challenging problem. Agents must act in such a way that makes progress toward the achievement of a goal while avoiding conflict with their teammates. In information asymmetric domains, it is often necessary to share crucial observations in order to collaborate effectively. In traditional multiagent systems literature, these teams of agents share an ...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کامل